Deploying VVols on NTAP

VVolsEven before the release of vSphere 6, the hype for VVols has been in the upswing, and for a good reason. VVols allow for a granular management of VM objects within one or more datastores based on policies. I have written a few blogs about VVols, and also the requirements within NetApp here. I tend to write about the integration between the two vendors as I really like, and believe on their technology, and I am an advocate for both.

Anyway, deploying VVols on NetApp requires to first understand how this all works. So, with that in mind, don’t forget that this a software solution that relies on policies from both the VMware side and the NetApp side. As I explained on previous posts, deploying VVols on NetApp has certain requirements, but the one I’ll focus on is the VASA provider (VP). The VP acts as the translator between the VMware world and the storage array world, regardless of the storage vendor. Some storage vendors integrate the VP within the array others come as an OVA.

So, from the storage side, you first need to deploy the VP, and also in this case VSC, which is NetApp’s storage console within VMware. After all components have been installed, VASA will become your best friend as it will provision not only VVol datastores, but will also provision the volumes within NetApp, automatically create exports with proper permissions, and create the PE among others. The PE is a logical I/O proxy that the host sees and utilizes to talk to VVols on the storage side. In the case of an NFS (NAS) volume, the PE is nothing more than a mount point, in the case of iSCSI (SAN), the PE is a lun. Again, the VASA provider will automatically create the PE for you when you provision a VVol datastore.

Let’s start the roll out. Assumptions here are that you have already deployed VSC 6.0, VASA 6.0, and currently have vSphere 6.0 or later. On the NetApp side it is assumed that you have at least ONTAP 8.2.1 or later, and that you have already created an SVM of the protocol of preference whether it is iSCSI, FCP/FCoE or NFS, up to you.

The first thing you should do if you have both NetApp and VMware, or FlexPod for that matter, is to make sure your VMware hosts have the recommended settings from NetApp. To do this, go to VSC within the VMware Web Client, click summary, and click on the settings that are not green. VSC will open a new window and allow you to deploy those settings to the hosts. You should do this regardless if you are deploying VVols or not.

VSC_settings

 

The next step is to create a Storage Capability Profile within VSC/VASA. Within the VSC, go to VASA Provider for cDOT, and select Storage Capability Profiles (SCP). Here you will create your own profile of how you would like to group your storage, based on a specific criteria. For example, if you want a criteria for high performance, you may select a specific storage protocol, SSD drives, dedupe options, replication options, etc. This is the criteria that VASA will use to create your storage volumes when deploying VVol datastores, and if you already created a volume, this is also the criteria that will be qualified as compliant for the desired VVol storage.

I created an SCP that required the protocol to be iSCSI and SAS drives, the rest was set to any. This will result in VVol creation on the SAS drives only, and under the SVM that has iSCSI protocol and LIFs configured. If there are no iSCSI SVMs this would not work. Pretty self explanatory, I hope.

SCP_iSCSI

Now that the SCP is created, we can provision a VVol Datastore. Right click on the cluster or host and select “VASA Provider for clustered Date ONTAP”, then Provision VVol datastore.

Provision_VVol

Start the wizard and type the name of the VVol datastore, and select the desired protocol. Select the SCP that you want to include within the VVol, the qualified SVM(s) will be available if it matches the SCP you selected. For example, if you selected the SCP/protocol that calls for iSCSI and you only have one iSCSI SVM, that will be the only one that you will have as an option, and the NFS or FCP/FCoE SVMs will not appear. If there is a qualified volume, you may select to use it, or you may select none to create a new. If creating a new vol, choose the name, SCP, and other options just like you would from NetApp’s System Manager. You will also have the capability to add/create more volumes to the VVol datastore. The last step is to select a default SCP the VMs will use if the do not have a VMware profile assigned to them.

VVol_Complete

This will cause VASA to talk to your NetApp array and create a volume based on the SCP specified, at the same time, VASA will create the PE, which in this case is a lun.  You can add/remove storage to the VVol datastore you created at a later time simply by right-clicking the VVol and go to the VASA settings. Below you can see the PE that the VP created within the volume that was created during the VVol deployment process.

VVol_PE

 

The next step is to create a VM Storage Policy that points to the SCP. Once this policy is attached to a VM, it will “tell” the VM which datastore it is supposed to be on. So if you have a SQL VM on a high performance policy, you know that as long as the VM is in compliance, it will run in the high performance profile you created.  To create the VM policy within the Web Client, click on VM Storage Policies, select new (scroll with green + sign), give it a name and select the vCenter. For the rule set, select the VP from the drop-down box for “Rules based on data services” and add a rule based on profile name. For the profile name option, select the SCP you created initially under VASA. This will show you what storage is compatible with this rule. Since I selected the iSCSI SCP, it will show me the iSCSI VVol I have already created. This creates the VM policy that you can assign to individual VMs.

VSP_Rule1

VVol_Complete

 

You can also have different storage policies for the Home folder and VMDK.

VM_Policy

 

VM_Storage_Policy

 

Pretty cool, right?!?

I hope this helps you get started with VVols.

Get your NetApp – VVols while they are HOT

pistonToday, the long awaited NetApp VASA Provider (VP) and the new shiny VSC console have been released to general availability.

So what does VASA and VSC have to do with VVols? Everything. In previous posts I talked about both NetApp’s VSC and VASA provider for VMware here. These offerings along with VAAI provide a tight integration between VMware and NetApp. Given the transition from VMware’s C# Client (fat) to Web Client, it resulted in the need of updated versions, and this is how VSC 6.0 and VASA Provider 6.0 were born.

Now to VVols. In order to be able to deploy VVols with NetApp there are a few requirements.

  • vSphere 6.0 (or later)
  • NetApp Clustered Data ONTAP 8.2.1 or later (thanks Nick for the clarification)
  • VSC 6.0
  • NetApp VASA Provider 6.0

You can see now why this announcement is such a big deal, both VSC and VP make up the engine that powers up the VVols machine. Both vSphere and cDOT 8.2.1 have been out for a while, but those that wanted to test drive VVols with GA code could not do that until today except by using beta code.

VSC brings and additional enhancement with its new version and that is the addition of PowerShell cmdlets for most VSC features. These cmdlets along with PowerCLI and NetApp’s PowerShell Tool Kit can provide tighter integration and automation between NetApp and VMware.

 

You can download VSC and VP from the links below:

VSC_6.0_Download

NetApp_cDOT_VASA_Provider_6.0

VVols: All Systems Go

After a long wait and development/marketing effort from VMware, VVols are finally ready to take over your datacenter(s).

VVols are the next generation, integration between vSphere and storage arrays. VVols leverage a new set of APIs (VASA) that allows vSphere to communicate with the array and provide additional features at the VM level. VVols are based on storage policies, which in turn allows for further automation between products.

This storage abstraction provided by VVols, allows for the control of storage, not only at the VM level but also at the VDMK level. This is a great feature, as now you can control VMDKs as separate entities. The connections between the hosts and VVols are done through an abstraction layer known as Protocol Endpoints, which provides the user the freedom to use several protocols at once such as FC, iSCSI, or NFS.

There are a few requirements for VVols. One of them is that the array vendor can support VVols. The APIs from the vendor (VASA), as well as other vendor requirements. In the case of a storage array vendor such as NetApp, VSC is also required.

The Policy-Based Provisioning provided by VVols brings us even closer to the Software Defined Data Center (SDDC)

 

VVOLS

VMworld 2014 – Day 1

Day 1

Today marks the official start of VMworld 2014. People are still rolling in to register and collects their VMworld swag. People I talked to are anxiously waiting to hear the announcements today, most of them revolve around the Web UI.

The major announcements revolved around the following topics:

  • SDDC – Software Defined Data Center
    • Virtualize everything
    • NSX
    • VSAN
    • Automationv
    • Sphere 6 Beta
    • VVOLs
    • VSAN 2.0 Beta
    • vCloud 5.8
    • OpenStack + VMware
    • Containers (Docker, Pivotal, etc)
    • Hyper-Converged Infrastructure
      • Simpler deployment
      • EVO
        • EVO:RACK (Cloud Scale)
        • EVO:RAIL
  • End User Computing
    • Workspace Suite
    • AirWatch
    • Content Locker
  • Hybrid Cloud
    • vCloud Air (re-branded VCHS)
      • DevOps Services
      • Database as a service
      • Object Storage (EMC Vipr)
      • Mobility Services
      • Cloud Management (vRealize Air Automation)
      • vCloud Air on dmand

Other topics that are worth mentioning is the giveback foundation where VMworld is giving up to $250,000 to a charity of the choice of the attendees. Now that is pretty cool.

VMUG is a must, so if you do not belong to a VMUG group, find one near your area and join in. It is worth not only for the networking opportunities but also to help you keep up with all the products.

SDDC was arguably the main point at the keynote. Pat reinforced the need of micro-segmentation through NSX, along with the need to virtualize “everything” in order to meet business goals.